

# International Animal Health Products Pty Ltd

Chemwatch: 4856-03 Version No: 8.1 Chemwatch Hazard Alert Code: 2

Issue Date: 23/12/2022 Print Date: 28/08/2024 S.GHS.AUS.EN.E

## SECTION 1 Identification of the substance / mixture and of the company / undertaking

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

#### **Product Identifier**

| Product name                     | Flint's Medicated Oil |
|----------------------------------|-----------------------|
| Chemical Name                    | Not Applicable        |
| Synonyms                         | Not Available         |
| Chemical formula                 | Not Applicable        |
| Other means of<br>identification | Not Available         |

## Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | To assist with the healing of cuts, wounds and galls on horses, cattle and sheep. Wash and dry wound. Spray or apply using a |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                          | cotton wad three times a day.                                                                                                |

#### Details of the manufacturer or supplier of the safety data sheet

| Registered company name | International Animal Health Products Pty Ltd     |  |
|-------------------------|--------------------------------------------------|--|
| Address                 | 18 Healey Circuit Huntingwood NSW 2148 Australia |  |
| Telephone               | +61 2 9672 7944                                  |  |
| Fax                     | +61 2 9672 7988                                  |  |
| Website                 | www.iahp.com.au                                  |  |
| Email                   | info@iahp.com.au                                 |  |

## Emergency telephone number

| Association / Organisation        | Australian Poison Information Centre                         |
|-----------------------------------|--------------------------------------------------------------|
| Emergency telephone<br>numbers    | 13 11 26 (24 Hours)                                          |
| Other emergency telephone numbers | New Zealand: National Poisons Centre 0800 764 766 (24 hours) |

## **SECTION 2 Hazards identification**

## Classification of the substance or mixture

## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

| Poisons Schedule              | Not Applicable                                                                                                                         |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Classification <sup>[1]</sup> | Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1                    |  |
| Legend:                       | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -<br>Annex VI |  |

#### Label elements

| Hazard pictogram(s) |        |
|---------------------|--------|
|                     |        |
| Signal word         | Danger |

#### Hazard statement(s)

| H315 | Causes skin irritation.              |
|------|--------------------------------------|
| H317 | May cause an allergic skin reaction. |
| H318 | Causes serious eye damage.           |

#### Supplementary statement(s)

Not Applicable

## Precautionary statement(s) Prevention

| P280 | Wear protective gloves, protective clothing, eye protection and face protection. |
|------|----------------------------------------------------------------------------------|
| P261 | Avoid breathing mist/vapours/spray.                                              |
| P264 | Wash all exposed external body areas thoroughly after handling.                  |
| P272 | Contaminated work clothing should not be allowed out of the workplace.           |

#### Precautionary statement(s) Response

| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| P310           | Immediately call a POISON CENTER/doctor/physician/first aider.                                                                   |
| P302+P352      | IF ON SKIN: Wash with plenty of water and soap.                                                                                  |
| P333+P313      | If skin irritation or rash occurs: Get medical advice/attention.                                                                 |
| P362+P364      | Take off contaminated clothing and wash it before reuse.                                                                         |

#### Precautionary statement(s) Storage

Not Applicable

#### Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

## **SECTION 3 Composition / information on ingredients**

#### Substances

See section below for composition of Mixtures

#### **Mixtures**

| CAS No        | %[weight]                                                     | Name                                                                                                                                 |
|---------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 8001-26-1     | >60                                                           | linseed oil                                                                                                                          |
| 1319-77-3     | 1-10                                                          | cresylic acid                                                                                                                        |
| 64-17-5       | <2                                                            | <u>ethanol</u>                                                                                                                       |
| 8050-09-7     | <0.5                                                          | rosin-colophony                                                                                                                      |
| Not Available | balance                                                       | Ingredients determined not to be hazardous                                                                                           |
| Legend:       | 1. Classified by Chemwatch;<br>Annex VI; 4. Classification dr | 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -<br>awn from C&L * EU IOELVs available |

## **SECTION 4 First aid measures**

#### Description of first aid measures

Eye Contact

- If this product comes in contact with the eyes: • Wash out immediately with fresh running water.
  - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

|              | <ul> <li>Seek medical attention without delay; if pain persists or recurs seek medical attention.</li> <li>Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.</li> </ul>                                                                                                                                                                                                                                                                                                                   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skin Contact | <ul> <li>If skin contact occurs:</li> <li>Immediately remove all contaminated clothing, including footwear.</li> <li>Flush skin and hair with running water (and soap if available).</li> <li>Seek medical attention in event of irritation.</li> </ul>                                                                                                                                                                                                                                                                               |
| Inhalation   | <ul> <li>If fumes or combustion products are inhaled remove from contaminated area.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> <li>Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.</li> <li>Transport to hospital, or doctor.</li> </ul>             |
| Ingestion    | <ul> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> <li>Observe the patient carefully.</li> <li>Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.</li> <li>Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.</li> <li>Seek medical advice.</li> </ul> |

#### Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

#### BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

#### ADVANCED TREATMENT

- \_\_\_\_\_
- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- + Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 Treat symptomatically.

## **SECTION 5 Firefighting measures**

#### Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

#### Special hazards arising from the substrate or mixture

| Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may<br>result |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                                                                           |

## Advice for firefighters

| Fire Fighting | <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> </ul> |
|---------------|-------------------------------------------------------------------------------------|
|               | <ul> <li>Wear breathing apparatus plus protective gloves.</li> </ul>                |
|               | Prevent, by any means available, spillage from entering drains or water course.     |
|               | Use water delivered as a fine spray to control fire and cool adjacent area.         |

|                       | <ul> <li>Avoid spraying water onto liquid pools.</li> <li>Do not approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fire/Explosion Hazard | <ul> <li>Combustible.</li> <li>Slight fire hazard when exposed to heat or flame.</li> <li>Heating may cause expansion or decomposition leading to violent rupture of containers.</li> <li>On combustion, may emit toxic fumes of carbon monoxide (CO).</li> <li>May emit acrid smoke.</li> <li>Mists containing combustible materials may be explosive.</li> <li>Combustion products include:</li> <li>carbon dioxide (CO2)</li> <li>acrolein</li> <li>other pyrolysis products typical of burning organic material.</li> <li>May emit corrosive fumes.</li> <li>CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.</li> </ul> |
| HAZCHEM               | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## **SECTION 6 Accidental release measures**

## Personal precautions, protective equipment and emergency procedures

See section 8

## **Environmental precautions**

See section 12

#### Methods and material for containment and cleaning up

| Minor Spills | <ul> <li>Slippery when spilt.</li> <li>Remove all ignition sources.</li> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Control personal contact with the substance, by using protective equipment.</li> <li>Contain and absorb spill with sand, earth, inert material or vermiculite.</li> <li>Wipe up.</li> <li>Place in a suitable, labelled container for waste disposal.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Spills | <ul> <li>Slippery when spilt.</li> <li>Moderate hazard.</li> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear breathing apparatus plus protective gloves.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>No smoking, naked lights or ignition sources.</li> <li>Increase ventilation.</li> <li>Stop leak if safe to do so.</li> <li>Contain spill with sand, earth or vermiculite.</li> <li>Collect recoverable product into labelled containers for recycling.</li> <li>Absorb remaining product with sand, earth or vermiculite.</li> <li>Collect solid residues and seal in labelled drums for disposal.</li> <li>Wash area and prevent runoff into drains.</li> <li>If contamination of drains or waterways occurs, advise emergency services.</li> </ul> |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

## **SECTION 7 Handling and storage**

## Precautions for safe handling

| i locadiono ioi caro nana |                                                                                     |
|---------------------------|-------------------------------------------------------------------------------------|
| Safe handling             | DO NOT allow clothing wet with material to stay in contact with skin                |
|                           | Avoid all personal contact, including inhalation.                                   |
|                           | <ul> <li>Wear protective clothing when risk of exposure occurs.</li> </ul>          |
|                           | ▶ Use in a well-ventilated area.                                                    |
|                           | Prevent concentration in hollows and sumps.                                         |
|                           | <ul> <li>DO NOT enter confined spaces until atmosphere has been checked.</li> </ul> |
|                           | Avoid smoking, naked lights or ignition sources.                                    |
|                           | <ul> <li>Avoid contact with incompatible materials.</li> </ul>                      |
|                           | When handling, DO NOT eat, drink or smoke.                                          |
|                           | Keep containers securely sealed when not in use.                                    |
|                           | Avoid physical damage to containers.                                                |
|                           | Always wash hands with soap and water after handling.                               |
|                           | Work clothes should be laundered separately.                                        |
|                           |                                                                                     |

|                   | <ul> <li>Use good occupational work practice.</li> <li>Observe manufacturer's storage and handling recommendations contained within this SDS.</li> <li>Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.</li> </ul>                                                                                                                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other information | <ul> <li>Store in original containers.</li> <li>Keep containers securely sealed.</li> <li>No smoking, naked lights or ignition sources.</li> <li>Store in a cool, dry, well-ventilated area.</li> <li>Store away from incompatible materials and foodstuff containers.</li> <li>Protect containers against physical damage and check regularly for leaks.</li> <li>Observe manufacturer's storage and handling recommendations contained within this SDS.</li> </ul> |

## Conditions for safe storage, including any incompatibilities

| Suitable container      | <ul> <li>250 mL plastic bottle with spray pump; 500 mL plastic bottle with spray pump; 1 L plastic bottle.</li> <li>Check that containers are clearly labelled and free from leaks</li> <li>Packaging as recommended by manufacturer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage incompatibility | Contact with high pressure oxygen may cause ignition / combustion.  Materials soaked with plant/ vegetable derived (and rarely, animal) oils may undergo spontaneous combustion  Many vegetable and animal oils absorb oxygen from the air to form oxidation products. This oxidation process produces heat and the resultant increase in temperature accelerates the oxidation process.  Drying oils such as linseed, tung, poppy and sunflower oils and semi-drying oils such as soya bean, tall oil, corn, cotton and castor oils all absorb oxygen readily and thus experience the self-heating process.  Cotton fibres are readily ignited and if contaminated with an oxidisable oil, may ignite unless heat can be dissipated Vegetable oils and some animal fats undergo undesirable deterioration reactions in the presence of oxygen from the air becoming rancid accompanying off-flavours and smells. The mechanism of autoxidation of vegetable oils is classically regarded as following a number of stages being:  a usually rapid propagation  and a termination phase The initiation phase involves the formation of a free radical from a triglyceride molecule in the fat: this may be promoted by the presence of heavy metals in the oil, or by heat or light. The next stage is the reaction of the triglyceride free radical with oxygen to produce a peroxide free radical, which can react with another triglyceride to produce a hydroperoxide and another triglyceride free radical. Steps 2 and 3 can repeat in a chain reaction until two perxy free radicals collide and neutralise each other. Some drying oils produce cyclic peroxides instead of hydroperoxides. Autoxidation may also occur in saturated fatty acids and their esters. Monohydroperoxides are formed. Although all carbon atoms are subject to oxidation, preferential oxidation appears to occur towards the centre of the molecule. Autoxidation is assisted by higher ambient temperatures (the rate doubling for every ten degrees centigrade rise) and by the presence of heavy metal ions, especially copper. The deg |

## **SECTION 8 Exposure controls / personal protection**

## **Control parameters**

#### Occupational Exposure Limits (OEL)

## INGREDIENT DATA

| Source                          | Ingredient    | Material name       | TWA                   | STEL          | Peak          | Notes         |
|---------------------------------|---------------|---------------------|-----------------------|---------------|---------------|---------------|
| Australia Exposure<br>Standards | cresylic acid | Cresol, all isomers | 5 ppm / 22 mg/m3      | Not Available | Not Available | Not Available |
| Australia Exposure<br>Standards | ethanol       | Ethyl alcohol       | 1000 ppm / 1880 mg/m3 | Not Available | Not Available | Not Available |

## Emergency Limits

| Ingredient        | TEEL-1 TEEL-2      |                            |               | TEEL-3        |  |            |
|-------------------|--------------------|----------------------------|---------------|---------------|--|------------|
| cresylic acid     | 14 ppm             | 25 ppm                     |               | 250 ppm       |  |            |
| ethanol           | Not Available      | ot Available Not Available |               | Not Available |  | 15000* ppm |
| rosin-colophony   | 72 mg/m3 790 mg/m3 |                            |               | 1,500 mg/m3   |  |            |
|                   |                    |                            |               |               |  |            |
| Ingredient        | Original IDLH      |                            | Revised IDLH  |               |  |            |
| linseed oil       | Not Available      |                            | Not Available |               |  |            |
| cresylic acid     | 250 ppm            |                            | Not Available |               |  |            |
| ethanol           | Not Available      |                            | Not Available |               |  |            |
| waste asterileen. | Not Available      |                            | Not Available |               |  |            |

# Occupational Exposure Banding

| Ingredient      | Occupational Exposure Band Rating                                                                                                                                                                   | Occupational Exposure Band Limit                                                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| linseed oil     | E                                                                                                                                                                                                   | ≤ 0.1 ppm                                                                                                                                                                        |
| rosin-colophony | E                                                                                                                                                                                                   | ≤ 0.01 mg/m³                                                                                                                                                                     |
| Notes:          | Occupational exposure banding is a process of assigning chemica<br>potency and the adverse health outcomes associated with exposu<br>band (OEB), which corresponds to a range of exposure concentra | als into specific categories or bands based on a chemical's<br>ure. The output of this process is an occupational exposure<br>ntions that are expected to protect worker health. |

## Exposure controls

| Appropriate engineering<br>controls                                            | OTHERWISE:         Engineering controls are used to remove a hazard or place a engineering controls can be highly effective in protecting worprovide this high level of protection.         The basic types of engineering controls are:         Process controls which involve changing the way a job activit Enclosure and/or isolation of emission source which keeps a that strategically "adds" and "removes" air in the work environ designed properly. The design of a ventilation system must m Employers may need to use multiple types of controls to prevent adequate protection.         Local exhaust ventilation usually required. If risk of overexpoor obtain adequate protection.         An approved self contained breathing apparatus (SCBA) may ensure adequate protection.         An approved self contained breathing apparatus (SCBA) may ensure adequate ventilation in warehouse or closed storage "escape" velocities which, in turn, determine the "capture velocontaminant.         Type of Contaminant:         solvent, vapours, degreasing etc., evaporating from tank (ir aerosols, fumes from pouring operations, intermittent conta welding, spray drift, plating acid fumes, pickling (released a direct spray, spray painting in shallow booths, drum filling, or discharge (active generation into zone of rapid air motion)         grinding, abrasive blasting, tumbling, high speed wheel ger into zone of very high rapid air motion).         Within each range the appropriate value depends on:         Lower end of the range         1: Room air currents minimal or favourable to capture         2: Contaminants of low toxicity or of nuisance value only.         < | barrier between the worker and the hazard. W<br>kers and will typically be independent of worker<br>ty or process is done to reduce the risk.<br>selected hazard "physically" away from the wo<br>ment. Ventilation can remove or dilute an air of<br>hatch the particular process and chemical or co-<br>vent employee overexposure.<br>sure exists, wear approved respirator. Correct f<br>be required in some situations.<br>area. Air contaminants generated in the workp<br>posities" of fresh circulating air required to effect<br>in still air).<br>iner filling, low speed conveyer transfers,<br>it low velocity into zone of active generation)<br>conveyer loading, crusher dusts, gas<br>herated dusts (released at high initial velocity<br>is: Contaminants of high toxicity<br>is: High production, heavy use<br>4: Small hood-local control only<br>are away from the opening of a simple extractior<br>raction point (in simple cases). Therefore the ai<br>nee to distance from the contaminating source.<br>(200-400 f/min) for extraction of solvents gener<br>module by factors of 10 or more when extraction<br>multiplied by factors of 10 or more when extraction | ell-designed<br>r interactions to<br>rker and ventilation<br>contaminant if<br>ntaminant in use.<br>it is essential to<br>it is essential to<br>lace possess varying<br>ively remove the<br>Air Speed:<br>0.25-0.5 m/s (50-<br>100 f/min.)<br>0.5-1 m/s (100-<br>200 f/min.)<br>1-2.5 m/s (200-<br>500 f/min.)<br>2.5-10 m/s (500-<br>2000 f/min.)<br>2.5-10 m/s (500-<br>2000 f/min.) |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual protection<br>measures, such as<br>personal protective<br>equipment |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                        |
| Eye and face protection<br>Skin protection                                     | <ul> <li>No special equipment for minor exposure i.e. when handling OTHERWISE:</li> <li>Safety glasses with side shields.</li> <li>Contact lenses may pose a special hazard; soft contact le document, describing the wearing of lenses or restrictions include a review of lens absorption and adsorption for the Medical and first-aid personnel should be trained in their event of chemical exposure, begin eye irrigation immedia be removed at the first signs of eye redness or irritation - have washed hands thoroughly. [CDC NIOSH Current Integration See Hand protection below</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | small quantities.<br>enses may absorb and concentrate irritants. A vession use, should be created for each workplace<br>e class of chemicals in use and an account of ir<br>removal and suitable equipment should be react<br>tely and remove contact lens as soon as practi-<br>lens should be removed in a clean environmer<br>elligence Bulletin 59], [AS/NZS 1336 or national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | written policy<br>e or task. This should<br>njury experience.<br>dily available. In the<br>cable. Lens should<br>tt only after workers<br>al equivalent]                                                                                                                                                                                                                               |
| •                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                        |

|                  | OTHERWISE: Wear chemical protective gloves, e.g. PVC.                                                                                  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Body protection  | See Other protection below                                                                                                             |
| Other protection | No special equipment needed when handling small quantities.<br><b>OTHERWISE:</b><br>• Overalls.<br>• Barrier cream.<br>• Eyewash unit. |

## Recommended material(s)

#### GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Flint's Medicated Oil

| Material         | CPI |
|------------------|-----|
| BUTYL            | А   |
| NEOPRENE         | В   |
| NATURAL RUBBER   | С   |
| NATURAL+NEOPRENE | С   |
| NITRILE          | С   |
| NITRILE+PVC      | С   |
| PE               | С   |
| PE/EVAL/PE       | С   |
| PVC              | С   |
| SARANEX-23       | С   |
| VITON            | С   |

\* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

**NOTE:** As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

#### **Ansell Glove Selection**

| Glove — In order of recommendation |
|------------------------------------|
| MICROFLEX® 63-864                  |
| MICROFLEX® Diamond Grip® MF-300    |
| AlphaTec® Solvex® 37-675           |
| TouchNTuff® 83-500                 |
| DermaShield™ 73-711                |
| MICROFLEX® 73-847                  |
| MICROFLEX® 93-260                  |
| MICROFLEX® NeoPro® NPG-888         |
| MICROFLEX® Neogard® C52            |
| TouchNTuff® 73-500                 |

The suggested gloves for use should be confirmed with the glove supplier.

#### **SECTION 9** Physical and chemical properties

#### Information on basic physical and chemical properties

| Appearance     | Brown coloured liquid with characteristic phenol | ic odour; does not mix with water. |             |
|----------------|--------------------------------------------------|------------------------------------|-------------|
|                |                                                  |                                    |             |
| Physical state | Liquid                                           | Relative density (Water =<br>1)    | 0.938-0.944 |

#### Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

| Required Minimum<br>Protection Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator  |
|---------------------------------------|-------------------------|-------------------------|----------------------------|
| up to 10 x ES                         | A-AUS P2                | -                       | A-PAPR-AUS /<br>Class 1 P2 |
| up to 50 x ES                         | -                       | A-AUS / Class<br>1 P2   | -                          |
| up to 100 x ES                        | -                       | A-2 P2                  | A-PAPR-2 P2 ^              |

#### ^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

| Odour                                             | Not Available  | Partition coefficient n-<br>octanol / water               | Not Available  |
|---------------------------------------------------|----------------|-----------------------------------------------------------|----------------|
| Odour threshold                                   | Not Available  | Auto-ignition temperature<br>(°C)                         | Not Available  |
| pH (as supplied)                                  | Not Applicable | Decomposition<br>temperature (°C)                         | Not Available  |
| Melting point / freezing<br>point (°C)            | Not Available  | Viscosity (cSt)                                           | Not Available  |
| Initial boiling point and<br>boiling range (°C)   | Not Available  | Molecular weight (g/mol)                                  | Not Applicable |
| Flash point (°C)                                  | Not Available  | Taste                                                     | Not Available  |
| Evaporation rate                                  | Not Available  | Explosive properties                                      | Not Available  |
| Flammability                                      | Not Available  | Oxidising properties                                      | Not Available  |
| Upper Explosive Limit (%)                         | Not Available  | Surface Tension (dyn/cm<br>or mN/m)                       | Not Available  |
| Lower Explosive Limit (%)                         | Not Available  | Volatile Component (%vol)                                 | Not Available  |
| Vapour pressure (kPa)                             | Not Available  | Gas group                                                 | Not Available  |
| Solubility in water                               | Immiscible     | pH as a solution (1%)                                     | Not Applicable |
| Vapour density (Air = 1)                          | Not Available  | VOC g/L                                                   | Not Available  |
| Heat of Combustion (kJ/g)                         | Not Available  | Ignition Distance (cm)                                    | Not Available  |
| Flame Height (cm)                                 | Not Available  | Flame Duration (s)                                        | Not Available  |
| Enclosed Space Ignition<br>Time Equivalent (s/m3) | Not Available  | Enclosed Space Ignition<br>Deflagration Density<br>(g/m3) | Not Available  |

## **SECTION 10 Stability and reactivity**

| Reactivity                          | See section 7                                                                                                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                  | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| Possibility of hazardous reactions  | See section 7                                                                                                                                                    |
| Conditions to avoid                 | See section 7                                                                                                                                                    |
| Incompatible materials              | See section 7                                                                                                                                                    |
| Hazardous decomposition<br>products | See section 5                                                                                                                                                    |

## **SECTION 11 Toxicological information**

## Information on toxicological effects

| Inhaled      | Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be<br>damaging to the health of the individual.<br>Inhalation of oil droplets or aerosols may cause discomfort and may produce chemical inflammation of the lungs.<br>Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged<br>periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ingestion    | Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Skin Contact | Skin contact with the material may be harmful; systemic effects may result following absorption.<br>The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated<br>exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.<br>Open cuts, abraded or irritated skin should not be exposed to this material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Eye          | This material can cause eye irritation and damage in some persons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chronic      | Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.<br>There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.<br>Based on experience with similar materials, there is a possibility that exposure to the material may reduce fertility in humans at levels which do not cause other toxic effects.<br>Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.<br>Chronic exposure to the skin by cresol can cause peripheral nerve damage, impairment of kidney function and even necrosis of the liver and kidneys. Symptoms of chronic poisoning include abundant production of saliva, vomiting, diarrhoea, loss of appetite, headache, dizziness, mental disturbances and fainting. Contact dermatitis may also occur. |

<

#### Flint's Medicated Oil

Workers exposed to cresol vapour for 1.5-3 years experienced headaches that were frequently accompanied by nausea and vomiting. Other symptoms include high blood pressure, impaired kidney function, blood calcium disturbance and tremors. Isomers of cresol are tumour promoters.

Human and animal exposures to the phytooestrogens (for example, the isoflavones, some flavonoids, saponin, coumestans and lignans) can be high because these compounds are found in many foods. Although small amounts in the diet apparently protects against cancer, heart disease and osteoporosis, high levels over extended periods may produce toxic effects.

Glyceryl triesters (triglycerides) undergo metabolism to become free fatty acids and glycerol. Animal studies show that there is no toxicity when given by mouth unless the material takes up a large proportion of energy intake. Common side effects of treatment with HIV-I protease inhibitors (PI) include diarrhoea, nausea, vomiting, gastrointestinal discomfort, headache, weakness, fatigue and taste disturbances. Renal stones are seen occasionally.

| Flint's Medicated Oil | ΤΟΧΙΟΙΤΥ                                            | IRRITATION                                                       |
|-----------------------|-----------------------------------------------------|------------------------------------------------------------------|
|                       | Not Available                                       | Not Available                                                    |
|                       | τοχιςιτγ                                            | IRRITATION                                                       |
| linseed oil           | Oral (Rat) LD50: >2000 mg/kg <sup>[2]</sup>         | Skin (human):300 mg/3days-moderate                               |
|                       | тохісіту                                            | IRRITATION                                                       |
|                       | Dermal (rabbit) LD50: 2000 mg/kg <sup>[2]</sup>     | Eye (rabbit): 105 mg - SEVERE                                    |
| cresylic acid         | Inhalation (Rat) LC50: >0.178 mg/l4h <sup>[1]</sup> | Eye: adverse effect observed (irritating) <sup>[1]</sup>         |
|                       | Oral (Rat) LD50: 1454 mg/kg <sup>[2]</sup>          | Skin (rabbit): 524 mg/24h - SEVERE                               |
|                       |                                                     | Skin: adverse effect observed (corrosive) <sup>[1]</sup>         |
|                       | тохісіту                                            | IRRITATION                                                       |
|                       | Dermal (rabbit) LD50: 17100 mg/kg <sup>[1]</sup>    | Eye (rabbit): 500 mg SEVERE                                      |
|                       | Inhalation (Rat) LC50: 64000 ppm4h <sup>[2]</sup>   | Eye (rabbit):100mg/24hr-moderate                                 |
| ethanol               | Oral (Rat) LD50: 7060 mg/kg <sup>[2]</sup>          | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>  |
|                       |                                                     | Skin (rabbit):20 mg/24hr-moderate                                |
|                       |                                                     | Skin (rabbit):400 mg (open)-mild                                 |
|                       |                                                     | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> |
|                       | тохісіту                                            | IRRITATION                                                       |
| rosin-colophony       | dormal (not)   DE0: > 2000 ma//(a <sup>[1]</sup>    | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>  |
| rosin-colophony       | dermai (rat) LD50: >2000 mg/kg <sup>ra</sup>        |                                                                  |

| LINSEED OIL | * Akzo Nobel SDS<br>A high consumption of oxidised polyunsaturated fatty acids (PUFAs), which are found in most types of vegetable oil, may                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Increase the likelihood that postmenopausal women will develop breast cancer. Similar effect was observed on prostate cancer,<br>but the study was performed on mice Another "analysis suggested an inverse association between total polyunsaturated fatty    |
|             | acids and breast cancer risk, but individual polyunsaturated fatty acids behaved differently [from each other]. [] a 20:2 derivative of linoleic acid [] was inversely associated with the risk of breast cancer"                                              |
|             | PUFAs are prone to spontaneous oxidation/ peroxidation. The feeding of lipid oxidation products and oxidised fats has been                                                                                                                                     |
|             | and increased liver and kidney weights, as well as cellular damage to the testes and epididymes, increased peroxidation of                                                                                                                                     |
|             | membrane and tissue lipids and induction of cytochrome P450 activities in the colon and liver.                                                                                                                                                                 |
|             | The propensity for PUFAs to oxidise leads to the generation of free radicals and eventually to rancidity.                                                                                                                                                      |
|             | Culinary oils, when heated, undergo important chemical reaction involving self-sustaining, free radical-mediated oxidative                                                                                                                                     |
|             | deterioration of PUFAs. Such by-products may be cytotoxic, mutagenic, reproductive toxins and may produce chronic disease.                                                                                                                                     |
|             | Samples of repeatedly used oils collected from fast-food retail outlets and restaurants have confirmed the production of                                                                                                                                       |
|             | aldehydic lipid oxidation products (LOPs) at levels exceeding 10 exp-2 moles per kilogram (mol/kg) during "on-site" frying                                                                                                                                     |
|             | episodes. Volatile emissions from heated culinary oils used in Chinese-style cooking are mutagenic; exposure to such indoor air                                                                                                                                |
|             | pollution may render humans more susceptible to contracting lung or further cancers, together with rhinitis and diminished lung                                                                                                                                |
|             | function. The high temperatures used in standard (especially Chinese) frying result in fumes that are rich in volatile LOPs,                                                                                                                                   |
|             | including acrolein.                                                                                                                                                                                                                                            |
|             | The end products of lipid peroxidation are reactive aldehydes, such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE),                                                                                                                                       |
|             | the second one being known also as "second messenger of free radicals" and major bloactive marker of lipid peroxidation, due to its numerous biological activities resembling activities of reactive oxygen species. end-products of lipid peroxidation may be |
|             |                                                                                                                                                                                                                                                                |

mutagenic and carcinogenic malondialdehyde reacts with deoxyadenosine and deoxyguanosine in DNA, forming DNA adducts. Malondialdehyde produces mutagenic effects in several bioassays.

Side products of lipid peroxidation can also exert toxic effects, even at sites distant from the primary oxidation site. Such products (typically malondialdehyde and a large group of hydroxyalkenals - alpha-beta-unsaturated aldehydes) may interact with protein thiols (producing intermolecular cross-links) and, as a result produce functional impairment to enzyme systems, receptors and structural proteins. Aldehydes may also inhibit protein biosynthesis and increase osmotic fragility of lysosymes (releasing hydrolytic enzymes) and other subcellular organelles. They may also react with nucleic acids.

The toxicity of lipid hydroperoxides to animals is best illustrated by the lethal phenotype of glutathione peroxidase 4 (GPX4) knockout mice. These animals do not survive past embryonic day 8, indicating that the removal of lipid hydroperoxides is essential for mammalian life.

Peroxidised linoleic acid applied to the shaved skin of guinea pigs, in a patch test experiment, produced necrosis and bleeding. When the abdominal skin of guinea pig was patched for 8 days with a cream containing 25 nmol (in terms of malondialdehyde) of lipid peroxides per gram, a thickening of the epidermis was found

Lipid peroxidation in cellular membranes may produce several morphological alterations resulting, for example, in membrane aggregation, deformation or breakage. This may result in the release of hydrolytic enzymes which in turn may degrade functional macromolecules and cause secondary damage. In addition membrane-bound enzyme systems may be disrupted. For aliphatic fatty acids (and salts)

Acute oral (gavage) toxicity:

The acute oral LD50 values in rats for both were greater than >2000 mg/kg bw Clinical signs were generally associated with poor condition following administration of high doses (salivation, diarrhoea, staining, piloerection and lethargy). There were no adverse effects on body weight in any study In some studies, excess test substance and/or irritation in the gastrointestinal tract was observed at necropsy.

Skin and eye irritation potential, with a few stated exceptions, is chain length dependent and decreases with increasing chain length

According to several OECD test regimes the animal skin irritation studies indicate that the C6-10 aliphatic acids are severely irritating or corrosive, while the C12 aliphatic acid is irritating, and the C14-22 aliphatic acids generally are not irritating or mildly irritating.

Human skin irritation studies using more realistic exposures (30-minute,1-hour or 24-hours) indicate that the aliphatic acids have sufficient, good or very good skin compatibility.

Animal eye irritation studies indicate that among the aliphatic acids, the C8-12 aliphatic acids are irritating to the eye while the C14-22 aliphatic acids are not irritating.

Eye irritation potential of the ammonium salts does not follow chain length dependence; the C18 ammonium salts are corrosive to the eyes.

Dermal absorption:

The in vitro penetration of C10, C12, C14, C16 and C18 fatty acids (as sodium salt solutions) through rat skin decreases with increasing chain length. At 86.73 ug C16/cm2 and 91.84 ug C18/cm2, about 0.23% and less than 0.1% of the C16 and C18 soap solutions is absorbed after 24 h exposure, respectively.

Sensitisation:

No sensitisation data were located.

Repeat dose toxicity:

Repeated dose oral (gavage or diet) exposure to aliphatic acids did not result in systemic toxicity with NOAELs greater than the limit dose of 1000 mg/kg bw.

Mutagenicity

Aliphatic acids do not appear to be mutagenic or clastogenic in vitro or in vivo

Carcinogenicity

No data were located for carcinogenicity of aliphatic fatty acids.

Reproductive toxicity

No effects on fertility or on reproductive organs, or developmental effects were observed in studies on aliphatic acids and the NOAELs correspond to the maximum dose tested. The weight of evidence supports the lack of reproductive and developmental toxicity potential of the aliphatic acids category.

Given the large number of substances in this category, their closely related chemical structure, expected trends in physical chemical properties, and similarity of toxicokinetic properties, both mammalian and aquatic endpoints were filled using readacross to the closest structural analogue, and selecting the most conservative supporting substance effect level. Structure-activity relationships are not evident for the mammalian toxicity endpoints. That is, the low mammalian toxicity of this category of substances limits the ability to discern structural effects on biological activity. Regardless, the closest structural analogue with the most conservative effect value was selected for read across. Irritation is observed for chain lengths up to a cutoff' at or near 12 carbons).

Metabolism:

The aliphatic acids share a common degradation pathway in which they are metabolized to acetyl-CoA or other key metabolites in all living systems. Common biological pathways result in structurally similar breakdown products, and are, together with the physico-chemical properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Differences in metabolism or biodegradability of even and odd numbered carbon chain compounds or saturated/unsaturated compounds are not expected; even-and odd-numbered carbon chain compounds, and the saturated and unsaturated compounds are naturally occurring and are expected to be metabolized and biodegraded in the same manner. The acid and alkali salt forms of the homologous aliphatic acid are expected to have many similar physicochemical and toxicological properties when they become bioavailable; therefore,data read across is used for those instances where data are available for the acid form but not the salt, and vice versa. In the gastrointestinal tract, acids and bases are absorbed in the undissociated (non-ionised) form by simple diffusion or by facilitated diffusion. It is expected that both the acids and the salts will be present in (or converted to) the acid form in the stomach. This means that for both aliphatic acid or aliphatic acid salt,the same compounds eventually enter the small intestine, where equilibrium, as a result of increased pH, will shift towards dissociation (ionised form).

Hence, the situation will be similar for compounds originating from acids and therefore no differences in uptake are anticipated Note that the saturation or unsaturation level is not a factor in the toxicity of these substances and is not a critical component of the read across process.

Toxicokinetics:

The turnover of the [14C] surfactants in the rat showed that there was no significant difference in the rate or route of excretion of 14C given by intraperitoneal or subcutaneous administration. The main route of excretion was as 14CO2 in the expired air at 6 h after administration. The remaining material was incorporated in the body. Longer fatty acid chains are more readily incorporated than shorter chains. At ca. 1.55 and 1.64 mg/kg bw, 71% of the C16:0 and 56% of the C18:0 was incorporated and 21% and 38% was excreted as 14CO2, respectively.

Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oils, are mainly formed during the deodorisation step in the refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they readily hydrolyze into the free form glycidol in the gastrointestinal tract, which has been found to induce tumours in various rat tissues. Therefore, significant effort has been devoted to inhibit and eliminate the formation of GEs GEs contain a common terminal epoxide group but exhibit different fatty acid compositions. This class of compounds has been reported in edible oils after overestimation of 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters analysed by an indirect method, 3-MCPD esters have been studied as food processing contaminants and are found in various food types and food ingredients, particularly in refined edible oils. 3-Monochloropropane-1,2-diol (3-MCPD) and 2-monochloropropane-1,3-diol (2-MCPD) are chlorinated derivatives of glycerol (1,2,3-propanetriol). 3- and 2-MCPD and their fatty acid esters are among nonvolatile chloropropanols, Glycidol is associated with the formation and decomposition of 3- and 2-MCPD. It forms monoesters with fatty acids (GE) during the refining of vegetable oils. Chloropropanols are formed in HVP during the hydrochloric acidmediated hydrolysis step of the manufacturing process. In food production, chloropropanols form from the reaction of endogenous or added chloride with dlycerol or acylglycerol.

Although harmful effects on humans and animals have not been demonstrated, the corresponding hydrolysates, 3-MCPD and glycidol, have been identified as rodent genotoxic carcinogens, ultimately resulting in the formation of kidney tumours (3-MCPD) and tumours at other tissue sites (glycidol). Therefore, 3-MCPD and glycidol have been categorised as "possible human carcinogens (group 2B) and "probably carcinogenic to humans (group 2A), respectively, by the International Agency for Research on Cancer (IARC).

Diacylglyceride (DAG) based oils produced by one company were banned from the global market due to "high levels" of GEs. Several reports have also suggested that a bidirectional transformation process may occur not only between glycidol and 3-MCPD but also their esterified forms in the presence of chloride ions. The transformation rate of glycidol to 3-MCPD was higher than that of 3-MCPD to glycidol under acidic conditions in the presence of chloride ion.

Precursors of GEs in refined oils have been identified as partial acylglycerols, that is, DAGs and monoacylglycerides (MAGs); however, whether they also originate from triacylglycerides (TAGs) is still a topic of controversial debates. Several authors noted that pure TAGs were stable during heat treatment (such as 235 deg C) for 3 h and were therefore not involved in the formation of GEs. However, experimental results have shown that small amounts of GEs are present in a heat-treated oil model consisting of almost 100% TAGs. The formation of GEs from TAGs can be attributed to the pyrolysis of TAGs to DAGs and MAGs. In contrast, 3-MCPD esters in refined oils can be obtained from TAG . Presently, the mechanism for the formation of GE intermediates and the relationship between GEs and 3-MCPD esters are still unknown.

No significant acute toxicological data identified in literature search.

Epoxidation of double bonds is a common bioactivation pathway for alkenes. The allylic epoxides formed were found to be sensitizing. Research has shown that conjugated dienes in or in conjunction with a six-membered ring are prohaptens, while related dienes containing isolated double bonds or an acrylic conjugated diene were weak or non-sensitising. For group E aliphatic esters (polvol esters):

The polyol esters, including trimethylolpropane (TMP). Pentaerythritol (PE) and dipentaerythritol (diPE) are unique in their chemical characteristics since they lack beta-tertiary hydrogen atoms, thus leading to stability against oxidation and elimination. Therefore their esters with C5-C10 fatty acids have applications as artificial lubricants. Because of their stability at high temperatures, they are also used in high temperature applications such as industrial oven chain oils, high temperature greases, fire resistant transformer coolants and turbine engines.

Polyol esters that are extensively esterified also have greater polarity, less volatility and enhanced lubricating properties. Acute toxicity: Animal studies show relatively low toxicity by swallowing. These esters are hydrolysed in the gastrointestinal tract, and studies have not shown evidence of these accumulating in body tissues. Acute toxicity by skin contact was also found to be low.

Repeat dose toxicity: According to animal testing, polyol esters show a low level of toxicity following repeated application, either by swallowing or by skin contact.

Reproductive and developmental toxicity: This group should not produce profound reproductive effects in animals. Genetic toxicity: Tests have shown this group to be inactive. It is unlikely that these substances cause mutations.

Cancer-causing potential: No association between this group of substances and cancer.

For polyunsaturated fatty acids and oils (triglycerides):

Animal studies have shown a link between polyunsaturated fat and the incidence of tumours, which increased with increasing intake of polyunsaturated fats. This may be partly due to the propensity for polyunsaturated fats to oxidize, leading to generation of free radicals.

Research evidence shows that consuming high amounts of polyunsaturated fat may increase the risk of cancer spreading. Culinary oils, when heated, leads to self-sustaining oxidation f polyunsaturated fatty acids (PUFAs), which may produce oxidation products that are toxic to the cell and reproduction and which may cause mutations and chronic disease.

Samples of repeatedly used oils collected from fast-food retail outlets and restaurants have confirmed the production of aldehydic lipid oxidation products (LOPs) during frying. Volatile emissions from heated culinary oils used in Chinese-style cooking may cause mutations; exposure to such indoor air pollution may make humans more susceptible to contracting lung or other cancers, together with inflammation of the nose, and reduced lung function. The high temperatures used in standard (especially Chinese) frying result in fumes that are rich in volatile LOPs, including acrolein. Shallow frying appears to generate more LOPs than deep frying.

Birth defects: Animal testing shows that LOPs increase the rate of birth defects, whether or not the mother had diabetes. Further investigation reveals that safflower oil subjected to high temperatures markedly increased its propensity to increase birth defects. Further adverse health effects of LOPs in the diet: Animal testing shows that other documented effects of LOPs include peptic ulcer and high blood pressure.

Atherosclerosis: Investigations have revealed that LOPs derived from the diet can accelerate all three stages of the development of atherosclerosis, including endothelial injury, accumulation of plaque, and thrombosis.

Mutation- and cancer-causing potential: Since they are powerful alkylating agents, alpha,beta-unsaturated aldehydes can covalently modify DNA base units and therefore cause mutations. These LOPs can inactivate DNA replicating systems, a process that can increase the extent of DNA damage.

Malondialdehyde (MDA) is also generated by thermally stressing culinary oils, although at lower concentrations than alpha, betaunsaturated aldehydes. MDA and other aldehydes arising from lipid peroxidation (especially acrolein) present a serious cancer hazard.

The most obvious solution to the generation of LOPs in culinary oils during frying is to avoid consuming food in PUFA-rich oils as much as possible. Consumers and those involved in the fast-food industry could employ culinary oils of only a low PUFA content, or monounsaturated fatty acids (MUFA) such as canola or olive oil, or coconut oils (a saturated fatty acid).

Acrylamide (which can exert toxic effects on the nervous system and fertility, and may also cause cancer) can be generated when asparagines-rich foods are deep-fried in PUFA-rich oils.

For triglycerides:

Carboxylic acid esters will undergo enzymatic hydrolysis by ubiquitously expressed GI esterases. The rate of hydrolysis is dependant on the structure of the ester, and may therefore be rapid or rather slow. Thus, due to hydrolysis, predictions on oral absorption based on the physico-chemical characteristics of the intact parent substance alone may no longer apply. When considering the hydrolysis product glycerol, absorption is favoured based on passive and active absorption of glycerol. The Cosmetic Ingredient Review (CIR) Expert Panel has issued three final reports on the safety of 25 triglycerides, i.e., fatty acid triesters of glycerin

High purity is needed for the triglycerides. Previously the Panel published a final report on a diglycerides, and concluded that the ingredients in the diglyceride family are safe in the present practices of use and concentration provided the content of 1,2-diesters is not high enough to induce epidermal hyperplasia. The Panel discussed that there was an increased level of concern because of data regarding the induction of protein kinase C (PKC) and the tumor promotion potential of 1,2-diacylglycerols. The Panel noted that, nominally, glyceryl-1,3-diesters contain 1,2-diesters, raising the concern that 1,2-diesters could potentially induce hyperplasia. The Panel did note that these compounds are more likely to cause these effects when the fatty acid chain length is <=14 carbons, when one fatty acid is saturated and one is not, and when given at high doses, repeatedly. Although minimal percutaneous absorption of triolein has been demonstrated in vivo using guinea pigs (but not hairless mice) and in vitro using full-thickness skin from hairless mice, the Expert Panel recognizes that, reportedly, triolein and tricaprylin can enhance the skin penetration of other chemicals, and recommends that care should be exercised in using these and other glyceryl triesters in cosmetic products.

The Panel acknowledged that some of the triglycerides may be formed from plant-derived or animal-derived constituents. The Panel thus expressed concern regarding pesticide residues and heavy metals that may be present in botanical ingredients. They stressed that the cosmetics industry should continue to use the necessary procedures to sufficiently limit amounts of such impurities in an ingredient before blending them into cosmetic formulations. Additionally, the Panel considered the risks inherent in using animal-derived ingredients, namely the transmission of infectious agents. Although tallow may be used in the manufacture of glyceryl tallowate and is clearly animal-derived, the Panel notes that tallow is highly processed, and tallow derivatives even more so. The Panel agrees with determinations by the U.S. FDA that tallow derivatives are not risk materials for transmission of infectious agents.

Finally, the Panel discussed the issue of incidental inhalation exposure, as some of the triglycerides are used in cosmetic sprays and could possibly be inhaled. For example, triethylhexanoin and triisostearin are reported to be used at maximum concentrations of 36% and 30%, respectively, in perfumes, and 14.7% and 10.4%, respectively, in face powders. The Panel noted that in aerosol products, 95% – 99% of droplets/particles would not be respirable to any appreciable amount. Furthermore, droplets/particles deposited in the nasopharyngeal or bronchial regions of the respiratory tract present no toxicological concerns based on the chemical and biological properties of these ingredients. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects

Cosmetic Ingredient Review (CIR) : Amended Safety Assessment of Triglycerides as Used in Cosmetics August 2017 Glyceryl triesters are also known as triglycerides; ingested triglycerides are metabolized to monoglycerides, free fatty acids, and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Dermal absorption of Triolein in mice was nil; the oil remained at the application site. Only slight absorption was seen in guinea pig skin. Tricaprylin and other glyceryl triesters have been shown to increase the skin penetration of drugs. Little or no acute, subchronic, or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of caloric intake. Subcutaneous injections of Tricaprylin in rats over a period of 5 weeks caused a granulomatous reaction characterized by oil deposits surrounded by macrophages. Dermal application was not associated with significant irritation in rabbit skin. Ocular exposures were, at most, mildly irritating to rabbit eyes. No evidence of sensitization or photosensitization was seen in a guinea pig maximization test. Most of the genotoxicity test systems were negative. Tricaprylin, Trioctanoin, and Triolein have historically been used as vehicles in carcinogenicity testing of other chemicals. In one study, subcutaneous injection of Tricaprylin in newborn mice produced more tumors in lymphoid tissue than were seen in untreated animals, whereas neither subcutaneous or intraperitoneal injection in 4- to 6-week-old female mice produced any tumors in another study. Trioctanoin injected subcutaneously in hamsters produced no tumors. Trioctanoin injected intraperitoneally in pregnant rats was associated with an increase in mammary tumors in the offspring compared to that seen in offspring of untreated animals, but similar studies in pregnant hamsters and rabbits showed no tumors in the offspring. One study of Triolein injected subcutaneously in rats showed no tumors at the injection site. As part of an effort to evaluate vehicles used in carcinogenicity studies, the National Toxicology Program conducted a 2-year carcinogenicity study in rats given Tricaprylin by gavage. This treatment was associated with a statistically significant doserelated increase in pancreatic acinar cell hyperplasia and adenoma, but there were no acinar carcinomas, the incidence of mononuclear leukemia was less, and nephropathy findings were reduced, all compared to corn oil controls. Overall, the study concluded that Tricaprylin did not offer significant advantages over corn oil as vehicles in carcinogenicity studies. Trilaurin was found to inhibit the formation of neoplasms initiated by dimethylbenzanthracene (DMBA) and promoted by croton oil. Tricaprylin was not teratogenic in mice or rats, but some reproductive effects were seen in rabbits. A low level of fetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with Trioctanoin as a vehicle control. Clinical tests of Trilaurin at 36.3% in a commercial product applied to the skin produced no irritation reactions. Trilaurin, Tristearin, and Tribehenin at 40%, 1.68%, and 0.38%, respectively, in commercial products were also negative in repeated-insult patch tests. Tristearin at 0.32% in a commercial product induced transient, mild to moderate, ocular irritation after instillation into the eyes of human subjects. Based on the enhancement of penetration of other chemicals by skin treatment with glyceryl triesters, it is recommended that care be exercised in using them in cosmetic products.

Cosmetic Ingredient Review (CIR) Expert Panel: Final Report on the Safety Assessment of Trilaurin etc: Int J Toxicol, 20 Suppl 4, 61-94 2001

CRESYLIC ACID

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a nonallergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the

#### irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. No evidence of a sensitization response was observed in the Gum roins key study, a guideline Local Lymph Node Assay conducted in mice, or in ten supporting studies conducted in guinea pigs according to the GPMT or Buehler methods. Gum Rosin is not classified for dermal sensitization according to the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Gum Rosin is currently classified for Skin Sensitization according to Annex I to Directive 67/548/EEC as R43: May cause sensitization by skin contact. Gum Rosin is also classified according to EU Classification, Labelling and Packaging of Substances and Mixtures (CLP) Regulation (EC) No. 1272/2008. As part of the harmonized translation between Directive 67/548/EEC and EU CLP Regulation (EC) No. 1272/2008, Table 3.1 of EU CLP Regulation (EC) No. 1272/2008 classifies Gum Rosin as "Skin Sensitizer Category 1" and assigns the hazard statement H317: May cause an allergic skin reaction. Table 3.2 of EU CLP Regulation (EC) No. 1272/2008 contains a list of harmonized classifications and labelling of hazardous substances from Annex I to Directive 67/548/EEC. Gum Rosin is assigned the risk phrase R43: May cause sensitization by skin contact in Table 3.2. Subsequent evaluation determined that the single positive study for Gum Rosin was actually conducted with an oxidized form of the test material. Several esters of Rosin have been tested using similar protocols with similar results. When the Rosin esters were heated beyond the specified protocol, the oxidized material caused a positive sensitization response. When those same esters were retested using a different protocol which did not cause oxidation, all sensitization responses were negative. While the oxidized form of Gum Rosin should be considered a skin sensitizer, the recommendation is made to declassify non-oxidized Gum Rosin (CAS # 8050-09-7). Different rosin types are used interchangeably and are often chemically modified.. Colophony (rosin) is the nonvolatile fraction of the exudates from coniferous trees, and its main constituent is abietic acid. Abietic acid has been described as the allergenic constituent. Because it is not an electrophile, its sensitizing capacity was questioned when investigations regarding the allergenic properties of colophony started many years ago. It was found that highly purified abietic acid is nonallergenic but rapidly autooxidises forming a hydroperoxide which subsequently was identified as a major allergen of colophony . A variety of other oxidation products from abietic acid and dehydroabietic acid (the other major resin acid in colophony) were isolated and **ROSIN-COLOPHONY** identified, some of which were shown to be sensitizers in guinea pig studies. Clinical investigations have shown that patch testing with the hydroperoxide detects about 50% of the patients with contact allergy to colophony. Abietic acid, a rosin acid, is converted into a highly reactive hydroperoxide by contact with air. Unmodified colophony is a complex mixture of diterpenoid acids (i.e., resin acids, ca. 90%), diterpene alcohols, aldehydes, and hydrocarbons To cause sensitization, a chemical must bind to macromolecules (proteins) in the skin (producing so-called haptenation). Hydroperoxy resin acids are dermal sensitizers, with haptenation thought to occur via radical mechanisms. Conjugation of Llysine to the resin is predicted, with a Schiff base (or imine) linkage formed between the C-7 of the resin and the free amino group of lysine. Resin acids accumulate in the plasma membrane, a non-aqueous environment apparently conducive to conjugation of hydroperoxy resin acids with lysine side chains of membrane proteins, through covalent binding. Such binding might lead to interaction with immune cells having resin acid specificity. The haptenation mechanism may be involved in allergic contact dermatitis and occupational asthma observed from exposure to resin acid solids and aerosols. For a better understanding of the mechanisms of contact allergic reactions, the patterns of cross-reactivity between different resin acid oxidation products were studied. The 13,14(alpha)-epoxide and the 13,14(beta)-epoxide of abietic acid and 15hydroperoxydehydroabietic acid (15-HPDA) were shown in experimental sensitization studies to be contact allergens. Crossreactivity was observed between the alpha- and beta-epoxides and also between the epoxides and the previously identified rosin allergen 15-hydroperoxyabietic acid (15-HPA). This indicates that 15-HPA may form an epoxide which then reacts with skin protein to generate the complete antigen. 15-HPA and 15-HPDA cross-reacted as well. This can be explained by the formation of similar alkoxy radicals from both hydroperoxides which further react with skin protein. Cross-reactivity patterns of the resin acid oxidation products indicate that 15-HPA may react with skin proteins either as a radical or as an epoxide, thus generating different antigens. The presence in rosin of the epoxides of abietic acid was also studied. The beta-epoxide was detected in gum rosin. Moreover, the epoxides elicited reactions in rosin-allergic individuals. Thus, the 13,14(beta)-epoxide of abietic acid was identified as a new, important rosin allergen. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic LINSEED OIL & ROSINskin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not COLOPHONY simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, LINSEED OIL & ETHANOL the production of vesicles, scaling and thickening of the skin. Acute Toxicity Carcinogenicity × × -× **Skin Irritation/Corrosion** Reproductivity Serious Eye -STOT - Single Exposure × Damage/Irritation **Respiratory or Skin** -× STOT - Repeated Exposure sensitisation Mutagenicity × **Aspiration Hazard** ×

Legend: X – Data either not available or does not fill the criteria for classification

✔ – Data available to make classification

## **SECTION 12 Ecological information**

|                       | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|-----------------------|------------------|--------------------|-------------------------------|------------------|------------------|
| Flint's Medicated Oil | Not<br>Available | Not Available      | Not Available                 | Not<br>Available | Not<br>Available |
|                       | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                       | EC50             | 72h                | Algae or other aquatic plants | >0.4-<br>0.6mg/l | 2                |
| linseed oil           | EC50             | 48h                | Crustacea                     | >0.8mg/l         | 2                |
|                       | NOEC(ECx)        | 72h                | Algae or other aquatic plants | 0.4-<br>0.6mg/l  | 2                |
|                       | LC50             | 96h                | Fish                          | >1mg/l           | 2                |
|                       | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                       | EC50             | 48h                | Crustacea                     | 7.7mg/l          | 2                |
| crosvlic acid         | LC50             | 96h                | Fish                          | Fish 4.4mg/l     |                  |
| cresync aciu          | NOEC(ECx)        | 96h                | Fish                          | 0.3mg/l          | 2                |
|                       | EC50             | 96h                | Algae or other aquatic plants | 5.2-<br>10.4mg/L | 4                |
|                       | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                       | EC50             | 72h                | Algae or other aquatic plants | 275mg/l          | 2                |
| - (h - m - 1          | EC50             | 48h                | Crustacea                     | 2mg/L            | 4                |
| etnanoi               | EC50(ECx)        | 96h                | Algae or other aquatic plants | <0.001mg/L       | 4                |
|                       | LC50             | 96h                | Fish                          | 42mg/L           | 4                |
|                       | EC50             | 96h                | Algae or other aquatic plants | <0.001mg/L       | 4                |
|                       | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                       | EC50             | 72h                | Algae or other aquatic plants | >10<20mg/l       | 2                |
| vecin estenhenv       | EC50             | 48h                | Crustacea                     | 4.5mg/l          | 1                |
| rosin-colophony       | EC50             | 96h                | Algae or other aquatic plants | 0.031mg/l        | 2                |
|                       | EC0(ECx)         | 48h                | Crustacea                     | 2.15mg/l         | 1                |
|                       | 1.050            | 96b                | Fish                          | 1.5mg/l          | 2                |

## **DO NOT** discharge into sewer or waterways.

## Persistence and degradability

| Ingredient      | Persistence: Water/Soil     | Persistence: Air            |
|-----------------|-----------------------------|-----------------------------|
| cresylic acid   | LOW (Half-life = 49 days)   | LOW (Half-life = 0.67 days) |
| ethanol         | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) |
| rosin-colophony | HIGH                        | HIGH                        |

## **Bioaccumulative potential**

| Ingredient      | Bioaccumulation        |
|-----------------|------------------------|
| ethanol         | LOW (LogKOW = -0.31)   |
| rosin-colophony | HIGH (LogKOW = 6.4607) |

## Mobility in soil

| Ingredient      | Mobility              |
|-----------------|-----------------------|
| ethanol         | HIGH (Log KOC = 1)    |
| rosin-colophony | LOW (Log KOC = 21990) |

# **SECTION 13 Disposal considerations**

| Waste treatment methods         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product / Packaging<br>disposal | <ul> <li>Containers may still present a chemical hazard/ danger when empty.</li> <li>Return to supplier for reuse/ recycling if possible.</li> <li>Otherwise: <ul> <li>If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.</li> <li>Where possible retain label warnings and SDS and observe all notices pertaining to the product.</li> <li>Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.</li> <li>A Hierarchy of Controls seems to be common - the user should investigate: <ul> <li>Reduction</li> <li>Reuse</li> <li>Recycling</li> <li>Disposal (if all else fails)</li> </ul> </li> <li>This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shell life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.</li> <li><b>Do NOT</b> allow wash water from cleaning or process equipment to enter drains.</li> <li>It may be necessary to collect all wash water for treatment before disposal.</li> <li>In all cases disposal to sever may be subject to local laws and regulations and these should be considered first.</li> <li>Where in doubt contact the responsible authority.</li> <li>Recycle wherever possible or consult manufacturer for recycling options.</li> <li>Consult State Land Waste Authority for disposal.</li> <li>Bury or incinerate residue at an approved site.</li> <li>Recycle containers if possible, or dispose of in an authorised landfill.</li> </ul> </li> </ul> |

## **SECTION 14 Transport information**

# Labels Required Marine Pollutant HAZCHEM Not Applicable

## Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

## Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

## Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

## 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

#### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

| •               |               |
|-----------------|---------------|
| Product name    | Group         |
| linseed oil     | Not Available |
| cresylic acid   | Not Available |
| ethanol         | Not Available |
| rosin-colophony | Not Available |

#### 14.7.3. Transport in bulk in accordance with the IGC Code

| Product name    | Ship Type     |
|-----------------|---------------|
| linseed oil     | Not Available |
| cresylic acid   | Not Available |
| ethanol         | Not Available |
| rosin-colophony | Not Available |

## **SECTION 15 Regulatory information**

## Safety, health and environmental regulations / legislation specific for the substance or mixture

linseed oil is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

#### cresylic acid is found on the following regulatory lists

#### ethanol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

#### rosin-colophony is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

#### **Additional Regulatory Information**

Not Applicable

#### National Inventory Status

| National Inventory                                 | Status                                                                                                                                                                                               |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Australia - AIIC / Australia<br>Non-Industrial Use | Yes                                                                                                                                                                                                  |
| Canada - DSL                                       | Yes                                                                                                                                                                                                  |
| Canada - NDSL                                      | No (linseed oil; cresylic acid; ethanol; rosin-colophony)                                                                                                                                            |
| China - IECSC                                      | Yes                                                                                                                                                                                                  |
| Europe - EINEC / ELINCS /<br>NLP                   | Yes                                                                                                                                                                                                  |
| Japan - ENCS                                       | No (rosin-colophony)                                                                                                                                                                                 |
| Korea - KECI                                       | Yes                                                                                                                                                                                                  |
| New Zealand - NZIoC                                | Yes                                                                                                                                                                                                  |
| Philippines - PICCS                                | Yes                                                                                                                                                                                                  |
| USA - TSCA                                         | Yes                                                                                                                                                                                                  |
| Taiwan - TCSI                                      | Yes                                                                                                                                                                                                  |
| Mexico - INSQ                                      | Yes                                                                                                                                                                                                  |
| Vietnam - NCI                                      | Yes                                                                                                                                                                                                  |
| Russia - FBEPH                                     | Yes                                                                                                                                                                                                  |
| Legend:                                            | Yes = All CAS declared ingredients are on the inventory<br>No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require<br>registration. |

#### **SECTION 16 Other information**

| Revision Date | 23/12/2022 |
|---------------|------------|
| Initial Date  | 13/03/2013 |

#### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

#### **Definitions and abbreviations**

- PC TWA: Permissible Concentration-Time Weighted Average
- PC STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- ▶ TEEL: Temporary Emergency Exposure Limit。

end of SDS

- IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level
- PNEC: Predicted no-effect concentration
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European INventory of Existing Commercial chemical Substances
- ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
- PICCS: Philippine Inventory of Chemicals and Chemical Substances
- TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

New Zealand HSNO Approval number: HSR100759

Veterinary Medicines (Non-dispersive Open System Application) Group Standard 2017